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Composite assessments aim to combine different aspects of a disease in a single score and are utilized in a variety of
therapeutic areas. The data arising from these evaluations are inherently discrete with distinct statistical properties. This
tutorial presents the framework of the item response theory (IRT) for the analysis of this data type in a pharmacometric
context. The article considers both conceptual (terms and assumptions) and practical questions (modeling software, data
requirements, and model building).
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As for many natural sciences, measurement is an essential

basis for the application of the pharmacometric methodol-

ogy. The comprehensive set of tools developed in this, and

other, quantitative sciences becomes applicable only after

physiologic or pathophysiologic quantities have been trans-

lated into numeric values. The “measurement” of disease

severity is particularly challenging due to the complex, mul-

tifaceted nature of most diseases. Composite assessments

strive to capture this complexity by combining different

aspects of a disease in a single value. The resulting scales

are essential instruments for diagnosing and monitoring of

patients in many therapeutic areas. The item response the-

ory (IRT), a statistical framework especially well-suited for

the analysis of this type of data, is the subject of this

tutorial.
Healthcare-related composite assessments are as

diverse as the diseases they attempt to measure and espe-

cially common when no biomarkers are available. They usu-

ally take the form of a questionnaire and summarize the

responses to each question in an aggregate score; however,

they differ in question type, response range, assessor,

aggregation method, and much more. Table 1 gives a glance

of the diversity in healthcare-related composite assessments

by listing the properties of three assessments from different

therapeutic areas: the Major Depression Inventory (MDI) for

depression,1 the Neuropsychiatric Inventory (NPI) for Alz-

heimer disease,2 and the Expanded Disability Status Scale

(EDSS) for multiple sclerosis.3

The origins of IRT date back to the 1940s and 1950s

when standardized testing procedures, earlier mostly used

by the military, were adopted for educational and achieve-

ment tests. Especially the transition from essay to multiple

choice-based assessments was an important nontechnical

factor for the development of IRT.4 The theory of this

approach is based on many significant advances in both

psychometrics and statistics. Nevertheless, it is the works

of Lazarsfeld,5 Lord,6 and Birnbaum7 in the 1950s that

most directly laid out its foundation. For a large-scale appli-

cation of IRT, it took until the beginning of the 1980s when

computational and algorithmic advances allowed the

application of methodology to assessments with >50 ques-

tions.4 Since then, IRT has extended to reduce the underly-

ing assumptions further and to benefit from the widely

increased computational capacity. Today, IRT is an impor-

tant tool in the field of psychometrics and is used for the

design and analysis of many high stakes educational test-

ing procedures. Well-known examples include the Graduate

Management Admission Test,8 a standardized business

school entry test taken annually by more than 200,000

examinees, or the Graduate Record Examination,9 an

admission requirement for most graduate schools in the

United States.
When applied to healthcare-related composite assess-

ments, IRT can provide a more powerful inference process,

unique insights into the structure of the data, and enhanced

simulation capabilities (we will revisit its advantages later).

This tutorial aims at providing an introduction to the use of

IRT to analyze healthcare-related composite assessments

without choosing a particular assessment. Instead, we will

focus on general concepts applicable to a broad class of

outcomes. We will do so from a “pharmacometric point of

view” (i.e., by taking into account the requirements of phar-

macometric data analyses as well as standard tools and

workflows existing in the field). At times, this will lead to a

slightly different interpretation and utilization of IRT as in a

traditional psychometric context. An effort will be made to

highlight differences where necessary.
This article consists of two main parts: theoretical basis

section and the pharmacometric application section. In the

first part, we will go through the general terms, concepts,

and assumptions behind IRT. In the second part, we will

see how these principles apply to data commonly encoun-

tered in pharmacometrics. We will consider the choice of a

modeling software, data requirements, model building, and

diagnostics. In the end, we will look at more complex IRT

models and examine arguments for its use in a clinical drug

development setting. In addition to this main text, a supple-

ment is provided that illustrates the implementation of a

pharmacometric IRT model in nonlinear mixed-effect

modeling (NONMEM).10
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Theoretical basis
We will use the example of a high school mathematical

examination to explain some of the theoretical concepts

and assumptions behind IRT. This use case is not only very

close to its original application but also represents a simple

use case that is hopefully relatable. We assume that the

examination consists of several tasks each student is asked

to complete and that the sum of correctly answered ques-

tions corresponds to the overall score, which is then used

to rank the students.

Basic concept
Intuitively, one will regard a student with a high examination

score as being skilled in mathematics or having a high

mathematical ability, despite the fact that any examination

represents only a fraction of all possible mathematical prob-

lems and, more importantly, that mathematical ability is an

entirely artificial construct. The interpretation of examina-

tions or tests as surrogate measures for a hypothetical abil-

ity is, therefore, entirely part of our intuition (even if we

might not always explicitly acknowledge this). One way of

approaching IRT is thinking of it as a formalization of these

intuitive considerations.
Figure 1a portrays the often implicitly made analogy

between the score of the examination, let us denote it by

yi, and the hypothetical, and, hence, unobservable ability of

the students, which we will refer to by wi. The line, in this

case, merely represents the mapping from wi to yi, its par-
ticular shape is secondary.

When zooming in on an individual question or item, we
would expect a similar principal to hold; even if the data sci-
entist in us will want to constrain the range of the mapping
to 0 (false answer) and 1 (correct answer). The latter can
be achieved using a link function with the appropriate
range, which, in our case, could be the frequently used
expit function (exp ðxÞ=ðexp ðxÞ11Þ). On the individual item
level, the stochastic nature of the process is also more tan-
gible, and we are inclined to instead talk about “the proba-
bility of student i to answer item j correctly” or formally
Pðyij 51Þ. Figure 1b visualizes the shift from the examina-
tion, or aggregate score, to the individual item level with the
adaptations discussed.

The visualization of our current concept in Figure 1b
with the repetition of the same function for each of the
three items makes one question immediately evident: Do
we have to assume that the relationship between ability
and the probability to answer correctly is the same across
items? Of course not! It is, in fact, very likely, or even desir-
able, to have some questions that most students can
answer correctly (item 1 in Figure 1c), as well as some
that are intended for the best students only (item 3 in Fig-
ure 1c). Suddenly, items have properties that are indepen-
dent of the examinees, and it is the interaction of the
subject’s ability and the characteristics of the item that

Table 1 Three examples of healthcare-related composite assessments that show the diversity of these classes of outcomes

Name [Ref] MDI NPI Kurtzke EDSS

Disease Depression Alzheimer disease Multiple sclerosis

Components 12 self-report mood questions (e.g.,

“Have you felt low in spirits or sad?”)

12 behavioral domains in dementia

(e.g., hallucinations or euphoria)

8 functional systems (e.g., pyramidal or

visual)

Responses 0 to 5 (“ at no time” to “all the time” ) 0 to 4 for frequency and 1 to 3 for

severity (“ never” to “very often” and

“mild” to “ severe” )

0 to 5/6 with component specific mean-

ing (e.g., “ normal” to “quadriplegia”

for pyramidal)

Assessor Patient Caregiver Healthcare professional

Aggregate score 0 to 60 (sum of question scores) 0 to 144 (sum of frequency times sever-

ity score from each component)

0 to 10 in increments of 0.5 (based on

a decision tree)

EDSS, Expanded Disability Status Scale; MDI, Major Depression Inventory; NPI, Neuropsychiatric Inventory.

Figure 1 From intuition to item response theory (IRT). The schematic illustrates how an often implied surrogacy between the examina-
tion score and ability (a) can be translated to the individual question level (b) and extended to include item-specific properties (c) to
form the basis of the framework.
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influence the response probability. This separation is the

core concept of the IRT framework, and, for this tutorial, we

will consider it as the defining property of an IRT model.
In fact, neither the focus on particular items nor the

assumption of a hypothetical and unobserved variable is a

feature that is unique to this framework. An example is a

work by Hu et al.11 that uses a latent variable approach to

link a continuous and a discrete end point, but that one

would not consider IRT modeling. What is unique about an

IRT model is much more the direct treatment of character-

istics of the individual assessment components (i.e., the

explicit acknowledgment of the measurement process). It is

this decomposition of the data into assessment-specific and

subject-specific features that enable unique insights. This

pragmatic framing is probably more general than IRT defini-

tions in the psychometrics literature but it is hopefully well

adapted to its pharmacometric use.

Item characteristic functions
The nonlinear function fj that models the properties of an

individual item is called an ICF, and its graphical represen-

tation is an ICC. The ICFs provide the mapping between a

subject’s ability wi and the probability of a particular

response. The shape of the function is dependent on a set

of item-specific parameters (hj), and they exist not only for

dichotomous responses, as in the mathematical examina-

tion example, but can be defined for ordered categorical

count as well as continuous outcomes. The possibility to

have varying shapes as well as response types with an

assessment is the source of the enormous flexibility of IRT

models to handle a variety of different assessments. Mathe-

matically, many functions with a proper range can serve as

an ICF, but a number have proven useful in practice and

appear in many psychometric applications. Typically, ICFs

are parameterized in a way that provides a meaningful

interpretation to each of the item parameters.
For binary responses, a family of logit models with a dif-

fering number of parameters is frequently used. The sim-

plest member of this family is the one parameter logit (1PL)

model, which models the probability of a correct response

from subject i to item j as:

Pðyij 51Þ5fjðwi ; hjÞ5
ewi 2bj

11ewi 2bj
5

1
11ebj 2wi

; (1)

where wi is the ability of subject i and bj is an item-specific

parameter. (The model name “one parameter logit” is more

evident from the mathematically equivalent formulation

logitðpij Þ5wi 2bj .) In the 1PL model, the parameter bj corre-

sponds to the ability with a 50% probability of answering

correctly. For a given ability, larger values of bj correspond

to a lower probability to answer correctly, which is why the

parameter is referred to as “item difficulty.” The 1PL model

is also the basis of Rasch analysis, a statistical framework

closely linked to IRT but with slightly different assumptions

and objectives.
The two parameter logit (2PL) model adds the item-

specific parameter aj to the 1PL model and describes the

probability to answer item j correctly as:

Pðyij 51Þ5 1
11eaj ðbj 2wi Þ

: (2)

The extra parameter aj corresponds to the slope of the ICF
at its steepest point and can be interpreted as “item dis-
crimination” (i.e., items with a larger aj differentiate better
between high and low abilities). Furthermore, aj also affects
how strong two items are correlated.

The three parameter logit (3PL) model is obtained by
introducing the additional parameter cj into the 2PL model,
resulting in the following equation:

Pðyij 51Þ5cj 1ð12cjÞ
1

11eaj ðbj 2wi Þ
(3)

where the additional parameter cj defines a lower asymp-
tote for the probability of a correct response. The parameter
is referred to as “item guessing” as it corresponds to the
probability of answering correctly even if the subject has
ability 0. The effect of the three parameters aj, bj, and cj on
the ICC is visualized in the first row of Figure 2.

For ordered categorical or ordinal responses with Sj cate-
gories, two models are most frequently used in the IRT lit-
erature: the graded response (GR) and the generalized
partial credit (GPC) model. The GR model is adapted for
items that require the accomplishment of a number of tasks
in which the accomplishment of one subtask requires the
completion of the previous ones.12 For our mathematical
example, it could be used for a task like: “Calculate the
derivative of the following equation, then use them to deter-
mine the maxima”; the second part of the task can only be
performed after the first one was completed successfully.
Another use-case for the GR model is graded items, for
example, when the teacher scores the approach taken to
solve a particular task on a scale from 0–4. The GPC
model, in contrast, is adapted for tasks that consist of sev-
eral subtasks that do not depend on each other.12 It could
be used for a mathematical task, such as “Solve the follow-
ing 5 quadratic equations” (if we are given the subtask
responses, we could also use the 3PL model for each
response, or if we can assume identical ICFs for each sub-
task and use a binomial model with a success probability
from the 3PL model).

Under the GR model, the probability for subject i to have
at least a score of s for item j is:

Pðyij � sÞ5 1
11eaj ðbj;s 2wi Þ

; (4)

where aj is the discrimination parameter and bj ;s is the diffi-
culty parameter for the s-th step of the item (bj ;s � bj ;s11).
The probability to have the score s is then calculated
according to:

Pðyij 5sÞ5Pðyij � sÞ2Pðyij � s11Þ; (5)

together with Pðyij � 0Þ51 and Pðyij � Sj11Þ50. This
model is most frequently used in the pharmacometrics liter-
ature to model ordered categorical data.13

The GPC model describes the probability to have the
score s at item i as:
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Pðyij 5sÞ5
exp ð

Xs

l50

ajðwi 2djl ÞÞ

XSj

m50

exp ð
Xm

l50

ajðwi 2djl ÞÞ
; (6)

where aj is the discrimination parameter and djl (l50; . . . ;Sj

and dj050) is the threshold parameter for the l-th category
of the item.12 The influence of the different item parameters
on the shape of the ICCs of the GR and GPC model is
shown in Figure 2 rows 2 and 3, respectively.

It is not hard to think about extensions of these
“classical” models and the psychometric literature provides
several more complex variants for ICFs. Here, we will limit

ourselves to the functions mentioned above. However,

when modeling real-world data, one should not hesitate to

explore different ICFs, if the ones described here do not

provide a satisfactory fit.

Item response scales
Abilities, such as in the high-school mathematical example

or trait, are the most common underlying hypothetical quan-

tities in the psychometric use of IRT. A pharmacometric

application, in contrast, will utilize constructs related to the

disease or health status of a subject. Here, we will use the

general term “latent variable” from now on to refer to the

underlying hypothetical quantity. It is maybe not immedi-

ately apparent, but the scale for the latent variable will

Figure 2 Influence of item parameters on the shape of the item characteristic curves for the three parameter logit (a), the graded
response (b), and the generalized partial credit models (c). Each panel varies one item parameter (indicated in the legend) while hold-
ing the other parameters constant. The different line types in panels b and c represent the category (s 5 1, 2, and 3).
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extend from minus to plus infinity. For the mathematical
example, we can understand that it will always be possible
to find an even better student and that they should also
have a higher value on the latent scale (similar for the
opposite end of the scale). However, it should be intuitively
clear that each examination has a constrained range in
which we can pinpoint the location of a particular student,
as soon as a student answers all questions correctly, we
only get a lower bound on their ability (if we have no other
information).

The ends of the latent variable scale are somehow given,
but the assignment of real numbers in between is to a large
degree arbitrary. For the conceptual visualization above
(Figure 1), we could write many sequences of numbers on
the scale (as long as they are linearly related) and the
changes would just be reflected in different item parameters
without affecting the predictions from the model. Hence, the
model is unidentifiable. To make it identifiable, we need to
fix the scale by defining a zero point (where does a student
with an ability of zero fall) as well as a unit size (what does
an improvement of one constitute). A common practice is
to calibrate the scale in a reference population and define
zero as the mean of that population and the unit size as its
SD. In our mathematical example, therefore, a student with
a score of 1 would be one SD better than the population
average in the reference population. Finally, a direction for
the scale has to be selected. Although this choice seems to
be evident in some applications (e.g., in the mathematical
example), it is less in others and needs to be carefully
considered.

In summary, item response scales extend from minus to
plus infinity and are relative scales, not unlike temperature
scales. (If we ignore the fact that there is the absolute zero
point of 0 Kelvin.) An interesting consequence is that two
item response scales from different tests and populations
are related through a linear transformation as long as the
two tests measure the same latent variable (this require-
ment, however, is fundamental and in practice is not easy
to establish). It is also interesting to note that 90% of the
subjects of a population will be found between 24 and 4 if
the scale has been calibrated for this population, as
described above (independent of the distribution, according
to Chebyshev’s inequality).

Statistical framework
In order to draw inference from real-world data using the
concepts developed so far, they need to be embedded in a
statistical framework, and the psychometrics literature pro-
vides multiple options for doing so. Some of these options
will be more adapted for a pharmacometric use of IRT and
we will restrict ourselves to the discussion of those.

Generally, we will be interested in finding predictors for
the differences in reporting behavior, occasionally on the
item-side, but mostly on the subject-side (i.e., we will want
to explain changes in the latent variable through predictors
such as time, treatment, covariates, and so on). The very
flexible framework of nonlinear mixed effect models
(NLMEMs) will feel familiar to most pharmacometricians
and, hence, we can use pretty much any functional form to
describe the relationship between predictors and the latent

variable, from simple closed-form expressions to complex

ordinary differential equations (ODEs).
Random effects describing between-subject variability will

be included on the latent variable and, for the most part,

assumed to follow a normal distribution or a transformation

thereof. However, it is worth highlighting that IRT models

do not depend on any normality assumption and neither

does the scale calibration mentioned in the previous sec-

tion. It is more the practical implementation as NLMEMs

that result in a certain reliance on the normal distribution.
Finally, we can use the IRT-NLMEM either in a maximum

likelihood or a Bayesian setting, with pros and cons on both

sides. Here, we choose the maximum likelihood setting, but

most concepts easily translate to the Bayesian formulation.

Assumptions
The introduction already hinted at some of the advantages

of an IRT-based analysis and we will revisit its benefits

later. However, we need to be aware that these gains are

the result of a set of assumptions implicitly made when

applying an IRT model.
First of all, like for any statistical model, the inference is

drawn under the assumption of a correct choice of a struc-

tural model. If, for example, the postulated ICF for one of

the mathematical questions is a 2PL model (i.e., no guess-

ing) but, in reality, there is a high chance of guessing the

correct answer (e.g., multiple choice questions with only

two options), then that question will bias the ability esti-

mates toward higher values.
The second, more IRT-specific, assumption is that of uni-

dimensionality, which postulates that the latent variable wi

is the only shared factor between items influencing the sub-

jects response probability. It should also be noted that it

does not forbid the existence of other factors affecting the

probability to a specific question. For instance, we could

imagine that for the mathematical example one of the ques-

tions required some additional knowledge in physics and

that students have a lower probability of answering this

question correctly independent of their ability. Finally, it is

essential to realize that the dimensionality of the data is

dependent on both, the assessment (i.e., the items) and

the subjects. A mathematical examination in which all ques-

tions demand the same level of algebra and calculus knowl-

edge cannot distinguish between these two dimensions.

However, even if the examination has varying algebra and

calculus difficulty, these dimensions will also be indistin-

guishable if all subjects have similar algebra and calculus

abilities.
The third important assumption is local independence,

stating that the responses to the items given the latent vari-

able are independent or that a response of one item does

not change the probability for a response of another item

(conditional independence). In practice, several possible

factors can introduce an additional dependence between

items. For example, a student’s confidence might change if

he receives immediate feedback about his answers (like in

an oral examination). The assumption of local dependence

is conceptually similar to unidimensionality but affects pairs

of items instead of the whole assessment.
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As with any modeling effort, some or all of these

assumptions will be violated in practice (to a certain

degree). However, it is crucial to strive to minimize these

violations to reduce their impact. We will discuss some

diagnostics that allow evaluating assumptions in section

model diagnostics, and in section advanced topics and

extensions we will highlight a few extensions to the IRT

concept, as introduced here, that relax the assumptions

mentioned.

PHARMACOMETRIC APPLICATION

In the second part of this tutorial, we will use the framework

outlined so far and apply it to pharmacometric data. Like

before, we will use a small example to illustrate the individ-

ual steps necessary to build the model as well as to high-

light potential problems. For this illustration example, we

will use a hypothetical assessment with seven items (2 rat-

ing scale items and 5 yes/no questions) as it might be used

to assess the severity of rheumatoid arthritis (RA). The indi-

vidual items of this hypothetical assessment are summa-

rized in Table 2.
As mentioned before, we will focus on general concepts

rather than describing the implementation of a particular

example. However, the supplementary material of this tuto-

rial contains some guidance on how to implement a simple

IRT model for the RA example in NONMEM.

Software
Several commercial and noncommercial computer pro-

grams specialized on the development and use of IRT mod-

els exist. The advantages of using software specifically

designed for IRT-modeling include a more straightforward

implementation of the model, especially adapted estimation

algorithms and automatic generation of standard diagnos-

tics. On the other hand, these programs were developed

for a psychometric application and, from a pharmacometric

point of view, might lack flexibility (it can be challenging or

impossible to include ODEs) as well as require additional

time to learn the use of the program. An overview of the

available programs can be found on the Wikipedia page for

“psychometric software” (en.wikipedia.org/wiki/Psychometric_

software).
There are also several R packages for the implementa-

tion of IRT models available. These packages have the

general advantage that installation and, hence, testing are

simple and that they operate in an environment most phar-

macometricians are already familiar with. The CRAN task

view for “Psychometric Models and Methods” is a good way

to explore available packages. Especially recommended

from this list is the package “MIRT,”14 which provides an

impressive set of functionality and to develop models even

for large assessments quickly. However, similar to the spe-

cialized stand-alone IRT software, these R packages

(including “MIRT”) are very focused on psychometrics and

lack flexibility for modeling longitudinal data.
General purpose NLMEM modeling software, such as

NONMEM,10 SAS (SAS Institute, Cary, NC), or Stan15 (the

Stan user manual16 contains an example of how to imple-

ment IRT models) are an alternative for the development of

IRT models. They do not provide the same level of assis-

tance as specialized software regarding coding the ICFs or

generation of diagnostics but allow for a much higher level

of flexibility.

Data and data format
A large number of parameters in the model and a low

amount of information per item result in the requirement of

a high number of observations for the precise estimation of

item parameters. The exact sample size will depend on a

complex interplay between the number of items in the

assessment, their information content, the model structure,

the heterogeneity of the subjects etc. DeMars17 gives some

general guidance on the number of subjects required. For a

2PL or 3PL model with fixed cj parameter, at least 500 sub-

jects are needed, 1,000 subjects are considered a more

cautious guideline if more complex models or distributions

are to be estimated and although more subjects will lead to

higher precision, little benefit is found beyond 2,000 sub-

jects. For ordered categorical items, the number of subjects

per category is a critical determinant for parameter precision

(ideally all categories occur as responses). DeMars reports

that samples as small as 250 subjects were sufficient for a

3 category model but that this number increased to more

than 1,000 when parameters for 6 categories were to be

estimated. It should be noted, however, that these guide-

lines are valid for cross-sectional studies and that longitudi-

nal data generally provides more information per subject.17

The response data needs to be available with an item-

level resolution for all subjects and visits to develop an

NLMEM IRT model. The chosen modeling software will

largely determine the particular formatting of the dataset.

Missing responses at a specific visit (i.e., a patient did not

finish answering the questionnaire), can be ignored when

they are missing completely at random. However, it is

advisable to include them in the dataset to be able to test

different strategies for handling missing data. On the longi-

tudinal level, missing data for IRT models does not differ

from other pharmacometric models and the same care

regarding the missing data mechanism needs to be taken.

Analysis steps and model building
Our goal in the model building process will be to describe

the probability of each subject’s response over time and

under treatment. Hence, we want to build a model of the

form as follows:

Table 2 Items of the fictitious RA score used as an illustration example and

their response range

Item Range

1 Patients global assessment

of disease activity

0–5

2 Pain 0–5

3 “Dress yourself” 0 (able)/1 (not able)

4 “Get in and out of bed” 0 (able)/1 (not able)

5 “Walk outdoors on flat ground” 0 (able)/1 (not able)

6 “Get a good night sleep” 0 (able)/1 (not able)

7 “Turn regular faucets on and off” 0 (able)/1 (not able)

Total score 0–15

Modeling Composite Assessment Data Using IRT
Ueckert

210

CPT: Pharmacometrics & Systems Pharmacology



Pðyijk 5sÞ5fjðwiðtk ; �Þ; hjÞ (7)

where yijk is now the response from subject i to item j at

visit k and tk is the time of that visit. The notation wi ðtk ; �Þ is
used as it highlights that it will be our goal to explain

changes over time primarily through changes in the latent
variable and consider the ICFs fj static.

Similar to the stepwise development of the pharmacokinetic
and the pharmacodynamic component of a pharmacokinetic/

pharmacodynamic model, it can be helpful to break down the
development of a complex IRT model into the following two

steps: in step one is the item response component and in
step two is the longitudinal component.

Step one focuses on the choice of a model describing

the relationship between latent variable and item responses
(i.e., fj and hj in Eq. 7), while keeping the structure of the
latent variable model wi ðtk ; �Þ fixed. The modeling of this

component mainly consists in the choice of appropriate
ICFs and we will discuss the particularities of the model

structure in the Item Response Component section. During
the development of the item response component, the

latent variable model wðtk ; �Þ acts only as a placeholder and
will later be replaced with the longitudinal model. Neverthe-
less, the choice of the structure for the placeholder can have

a profound influence on the outcome of the analysis, and it
should, therefore, be taken with care. The pros and cons of

some possible unstructured longitudinal models will be dis-
cussed in the Unstructured Longitudinal Model section.

The longitudinal component developed in step two

describes the change of the latent variable over time or
under treatment (i.e., a model for wi ðtk ; �Þ will be chosen
while keeping the ICFs fj and their item parameters hj fixed

to structure and estimates from step one). We will discuss
this modeling step in the Longitudinal Model section and

the Exposure-Response Model section. At the end of the
two-step procedure, a re-estimation of all parameters in the
joint-model as well as re-evaluation of important diagnostics

has to be performed.
Alternatively, it is also possible to develop the longitudinal

and the item response component simultaneously (i.e., to

make adjustments to both item response component and
the longitudinal component at the same time). Although this

approach has some indisputable advantages, such as the
best fit, it can be challenging to attribute model misspecifi-
cations correctly, and model stability might be an issue.

Therefore, the simultaneous model development is probably
best suited if data availability is expected to limit longitudi-

nal model complexity.
No matter if we choose a simultaneous or two-step

model development, the model building process will be sim-

ilar to other pharmacometric models: incremental model
modifications are performed on a simple base model and
subsequently evaluated using a diverse set of diagnostics

(described in the Model Diagnostics section). This cycle of
improvement ends when the model performs satisfactorily

for its intended purpose.

Item response component
The item response model captures the relationship
between item-level observations and latent variable. In

consequence, it also defines the actual IRT scale (Item
Response Scale section) and is of central importance for
all further inference. It is not always necessary to develop
the item response component model from scratch, some-
times an appropriate model for the assessment at hand
might be available in the literature (e.g., as the work of Bal-
sis et al.18 for the ADAS-cog scale). In other instances, the
assessment was even developed using IRT and the results
from that analysis can be used. Most of the time, however,
the same dataset will be used to develop both item
response and longitudinal components. In these cases, it is
important to recall the relative nature of IRT scales (as
described in the Item Response Scales section). The sub-
jects available in the data become the reference population,
which not only has consequences for the inference but also
affects the model building, as we will discuss later.

The choice of the ICFs fj for each item might seem to be
a formality (i.e., as entirely defined through the data type).
In most cases, however, there are several plausible choices
of ICFs per item, each of them with a slightly different set
of assumptions. For example, we could either model items
three to seven of the RA score as binary responses or
describe the sum of “not able” responses using an ordered
categorical model. Although the former provides more infor-
mation, it also includes an additional independence
assumption (conditional on the latent variable). Even if we
have decided to treat the items as binary, we still have to
choose among the 1PL, 2PL, or 3PL models. For our RA
score in Table 2, some of the binary items do not appear
to be very disease-specific (such as the quality of sleep).
Therefore, we might directly assume a non-zero probability
of a “one”-response even for subjects with low latent vari-
able values and use a 3PL binary model. On the other
hand, if the data source is rather small or mostly contains
subjects with a high disease severity, we might instead start
with a 2PL model and evaluate if a non-zero cj parameter
significantly improves the model fit.

After the ICFs have been chosen, we can explore the
effect of covariates on the item parameters. For the RA
example, maybe we would discover that patients who live
in an assisted living environment tend to report less prob-
lems for environment-specific items (“Get in and out of bed”
and “Turn regular faucets on and off”) or that the patients
from Japan report lower pain scores than their European
counterparts.

In some cases, we might even want to evaluate a time-
dependent relationship between latent variable and
response through time-varying covariates; for example, to
capture learning effects in a cognitive assessment.

The points above illustrate the potential complications
when developing the item response model and they high-
light that knowledge about the structure of the assessment,
the nature of the items, and the limitations of the available
data are indispensable during model development.

Unstructured longitudinal model
If the two-step model development strategy is selected, an
unstructured longitudinal model can serve as a placeholder
during the development of the item response model. The sim-
plest choice is to select one visit (e.g., baseline) from the
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available data and use it to build the item response compo-
nent (i.e., to use a cross-sectional slice of the data). With that
choice, the latent variable model is merely as follows:

wiðt1Þ5gi (8)

where wi ðt1Þ denotes the latent variable at the first occasion
and gi is a normally distributed random variable with mean
0 and variance 1 (i.e., gi � Nð0;1Þ). The fixed mean and
variance might be surprising at first; however, it corre-
sponds to the mathematical implementation of the scale
definition described in the Item Response Scales section.
Essentially, we define the subjects in the data at the cho-
sen visit as our reference population and set zero point and
unit size for the scale accordingly. (Technically, there is also
an identifiability issue for most ICFs among latent variable,
item difficulty bj, and item discrimination aj i.e., it is impossi-
ble to estimate x and y if they appear only as x and y in a
model.) This strategy is simple to implement and does not
require the definition of a longitudinal placeholder model.
Hence, there is no risk of misspecifications from the longitu-
dinal model to affect the item parameters. The main disad-
vantage of this strategy is the omission of the majority of
the data, leading to a higher uncertainty in the ICF parame-
ters. Furthermore, the baseline visit is often much more
homogeneous than later visits and might not cover the full
range of latent variable variability. The strategy is, therefore,
best suited when a large (relative to the complexity of the
model) external data source is available for the develop-
ment of the item response component. It is noteworthy that
the decomposition into item and subject-specific character-
istics, the core concept of IRT, allows us to use a much
wider range of data sources than maybe with other
approaches. For example, it is possible to combine popula-
tions with different baseline characteristics, disease levels,
and background drug therapies as long as it is reasonable
to assume that the ICFs are the same across populations.
We can use some of the diagnostics described in the next
section to verify this critical assumption. An ideal external
data source would cover a broader population than the
actual analysis dataset, this way we can be more confident
when extrapolating to more or less severe patient popula-
tions and we will get higher precision in item parameter
estimates.

A simple strategy of using all the data when building the
IRT model is to treat each visit independently, resulting in
the latent variable model as follows:

wiðtk Þ5gik (9)

with

gik �
Nð0; 1Þ if k51

Nðlk ;x
2
k Þ otherwise

8<
: (10)

where wi ðtk Þ is now the latent variable model for the visit at
time tk, and lk and x2

k are mean and variance at that visit.
Although this strategy utilizes all the data, it might still be
not suitable for uninformative assessments and is

complicated to implement if occasions are not clearly

defined (i.e., times of the visits differ significantly between

subjects).

Longitudinal model
The longitudinal component describes the evolution of the

latent variable w.r.t. time or treatment and its complexity

can range from simple linear models to complex nonlinear

functions described via ODEs. Unusual for modeling might

be the range from minus to plus infinity, which, depending

on the chosen model, might need to be taken care of. For

example, a simple linear model for the RA example, such

as:

wiðtÞ5basei1slpi � t; (11)

would not require any modification (i.e., the function already

covers the right range). However, if we were to choose a

more complex, semimechanistic, indirect-response type

model19 of the form:

dR
dt

5kini 2kouti � IðtÞ � R Rð0Þ5 kini

kouti
; (12)

with the intention to replace R with wi, then we need to

handle the fact that wi can be negative. A possible imple-

mentation could be:

dwi

dt
5kini 2kouti � IðtÞ � wi 1

kini

kouti
2w0i

� �
wið0Þ5w0i

; (13)

where w0i
is now allowed to be smaller than zero.

The uncommon range together with the nonlinear trans-

formation through the ICFs can make it also challenging to

infer an appropriate longitudinal model (see Figure 3). It

can, therefore, be helpful to plot empirical Bayes estimates

(EBEs) of the latent variable, from a model similar to the

one described in Eq. 9, vs. time, to obtain an understanding

of the dynamics on the latent variable scale.
Another potential challenge is respecting the choice of

the zero point and the unit size for the IRT scale during lon-

gitudinal model development (Item Response Scales sec-

tion). In most cases, this comes down to the specification

of the distribution for the latent variable at baseline (e.g.,

basei and w0i
above). If, for example, the analysis popula-

tion at baseline were defined as having a mean of 0 and

variance of 1, then we need to keep those assumptions

when estimating the longitudinal parameters

(basei ;w0i
� Nð0;1Þ), or the model will be unidentifiable

during a subsequent joint estimation of item and longitudi-

nal components. It is worth noting that these complications

disappear if an external data source was used to develop

the item response component, as described in the Item

Response Component section. In the case of the linear

model for the RA example, the baseline parameter basei

would merely be relative to the population from the external

source (i.e., a mean 21 and a variance of 0.5 would tell us

that the analysis population is less severe and less diverse

than the external reference).
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Both time-constant and time-varying covariates can eas-

ily be included on the longitudinal model component and

help to explain why some subjects progress faster or start

with a higher value at baseline. Again, care needs to be

taken that eventual scale definitions are kept. For example,

if the baseline value for the linear RA model from above is

supposed to differ between women and men, but the item

parameters have been fixed under the assumption of mean

0, variance 1 for the joint population, then one needs to

express mean and variance of the latent variable for one

sex in function of mean and variance of the other. Already,

for this simple, bivariate case, the equations for mean and

variance of males (lm;r
2
m) as a function of the values for

females (lf ; r
2
f ) and the fraction of females in the popula-

tion (pf) is reasonably complex (These equations assume

mean 0, variance 1 in the joint population. They can be

obtained by solving the equation for the mean and variance

of a mixture of distributions for one of the mixtures.):

lm52
pf

12pf
� lf (14)

r2
m5

12pf ðl2
f 1r2

f Þ
12pf

2l2
m (15)

We might, therefore, instead define one particular covariate

value as the reference (i.e., the one for which mean 0, vari-

ance 1 holds), and estimate the other means and variances

relative to it (the ICFs parameters need to be re-estimated

when doing this switch).
A noteworthy technique that avoids many of the scale

normalization issues is to fix the difficulty and discrimination

parameters of one of the items instead of the mean and

variance of the latent variable. This way, the identifiability

issue is removed and it is possible to estimate mean and

variance as usual.

Exposure-response model
Investigating the link between exposure and response is a

key consideration for most pharmacometric modeling exer-

cises. In an IRT model, it seems most natural to do this on

the latent variable (i.e., to change the disease state or the

progression of the disease while leaving the properties of
the assessment unchanged). As for the longitudinal model,
the range of the latent variable, as well as the distortion
through the ICF, might need some time to get used to.
However, the usual questions in regard to exposure-
response modeling still apply (i.e., also in an IRT-based
analysis the modeler needs to investigate: “Which exposure
metric is the best predictor for the response?” “What func-
tional form describes the relationship best?” “Is there a
delay between exposure and response?” etc.). With the two
example disease progression models for the RA example
from the previous section in mind, we could imagine to
investigate a linear dose-response relationship for the slope
parameter slpi in the linear model or to test an maximum
effect (Emax) concentration effect on the catabolic rate
parameter kouti in the indirect-response model.

Even if the latent variable seems to be the most obvious
place to investigate an exposure-response relationship, it is
still possible to test for an additional drug effect on individ-
ual or groups of items. This way, we could, for the RA
example, test whether a treatment has a stronger effect on
pain than explained through changes in the latent variable
alone. However, it should be noted that a difference in drug
effect for different items might be an indicator for a violation
of the unidimensionality assumption (Assumptions section).

Model diagnostics
The IRT model diagnostics need to evaluate the different
model components and verify the underlying assumptions.
There is a wealth of numerical and graphical diagnostics
available and it is important to acknowledge that each high-
lights a particular facet of the model best. With this in mind,
we can group the available diagnostics as follows: (i) diag-
nostics for the ICF fit to a particular item; (ii) diagnostics for
pairs of items; and (iii) diagnostics for the overall goodness
of fit (GOF). For each of those groups, the following sections
provide an overview of the most important diagnostics.

In addition to the descriptions given in the following sec-
tion, the graphical diagnostics applied to the RA example
are shown in Figures 4, 5, and 6. The figures focus on a
few items and the remaining ones can be found in the elec-
tronic Supplementary Material. All diagnostics displayed

Figure 3 Simulations (mean and 95% prediction interval) from a linear and nonlinear longitudinal model on the latent variable scale
and the resulting longitudinal evolution of the score for the rheumatoid arthritis score example. The transformation through the item
characteristic functions make inferring the underlying longitudinal model from the score alone challenging.
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have been generated for a simulated data with the “true”

analysis model (i.e., the one that has been used to simulate

the data) and, hence, are not expected to display any

model misspecification.

Item-fit diagnostics
Item-fit diagnostics focus on diagnosing the relationship

between latent variable and response while ignoring the

dynamics of the latent variable. They can, therefore, be

interpreted as verifying the assumption of correct ICF fit.

Depending on the chosen modeling strategy and the devel-

opment stage of the model, these diagnostics need to be

generated at different time points to verify the time-

invariance of the item response component.

A simple graphical diagnostic for the GOF of an individ-
ual ICC can be generated by plotting the distribution of
responses at a particular visit together with the distribution
of one or multiple simulations from the model (“mirror-plot”).
The multiple simulations version for two of the RA items at
baseline is shown in Figure 4a. Although this diagnostic is
easy to communicate even to nonmodelers, it only diagno-
ses the description averaged over the population and,
therefore, has a rather low power to detect misspecifica-
tions. This is especially apparent for binary data in which
the diagnostic shows the fraction of zero or one response
(i.e., a single value per item), whereas there are two (2PL),
three (3PL), or even more parameters estimated for each
item.

Figure 4 Mirror plot (a), binned mirror plot (b), and nonparametric item characteristic function smooth plot (c) as examples for graphi-
cal item-level diagnostics. All diagnostics are shown for two items of the rheumatoid arthritis example and are based on the “true” anal-
ysis model.
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A more informative diagnostic can be obtained by stratify-
ing this plot by the EBEs for the latent variable, which can
be obtained both for the observed and simulated data (with
an additional estimation step for the latter). A version with
three strata for the same items of the RA data example is

shown in Figure 4b. In contrast to the simple mirror plot,

the diagnostics now allow identifying which part of the ICF

is potentially misspecified. In practice, the choice for the
number of bins needs to be adapted to the number of sub-

jects in the dataset as well as their heterogeneity; however,

a poor choice might hide a misspecification.
An extension of this graph that avoids binning is the non-

parametric ICF smooth plot. It uses nonparametric smooth-
ing splines to fit responses and EBEs for both observed

data and multiple simulated datasets. The data-based

smoothing spline is then plotted together with the 95% con-

fidence band of the simulation-based smooths and
expected to fall within this band for an acceptable model fit.

Generalized additive models (GAMs) using the binomial

distribution are particularly suited for this purpose when

dealing with binary or ordered categorical data. Figure 4c
shows a GAM-based version of this nonparametric ICC

smooth plot for the RA data. In this figure, the smoothing

parameter for the GAM fit is obtained through cross-

validation. Although conceptually rather complex, these
graphs are easily producible for example using the “GAM”

R package.20 This diagnostic has the advantage to visual-

ize the ICCs of the items and, therefore, allow to direct the

model building process better.
It should be noted that both mirror and GAM-smoothed

diagnostics described in this section utilize the EBEs of the

Figure 5 Residual correlation plot between all pairs of items of
the rheumatoid arthritis example based on the “true” analysis
model.

Figure 6 Aggregate score visual predictive check (VPC) for the rheumatoid arthritis score showing the median, 2.5th, and 97.5th per-
centile of the observations together with the corresponding confidence intervals from the model (a) and item-level VPC for two of the
rheumatoid arthritis score items (b), both based on the “true” analysis model.
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latent variable for the observed and simulated data, hence,

there are expected to be less affected by shrinkage. Never-

theless, it is advisable to check shrinkage values for the

random effects associated with the latent variable when

interpreting these diagnostics.
A numerical diagnostics that evaluate the fit of individual

items is the S-v2 statistic,21,22 which tests the difference

between observed and expected (i.e., model-based) item

responses. A significant difference between the two is an

indicator for a misspecification. As the S-v2 statistic is to be

calculated for each item, a family-wise error rate correction

(such as the Bonferroni correction) has to be performed.
After misspecifications for a particular item has been

identified, we can choose a different ICF to try to correct it.

Finally, if a satisfactory fit cannot be obtained, it is also an

option to remove the item from the analysis. However, this

rather drastic step should only be considered if removal

can also be justified.

Item-pairs fit
Diagnostics for the fit of item pairs are of particular impor-

tance as they can be used to diagnose the misfit of a spe-

cific item (if an item appears in several misspecified pairs, it

is likely to be the culprit) as well as to test the assumptions

of conditional independence and unidimensionality.
Graphically, the fit of pairs of items can be evaluated

using residual correlation plots.23 The residuals are

obtained as the difference between expected and observed

responses for each subject and item, and they may be

standardized by dividing by the expected SD. We can then

visualize the correlation matrix of the residuals between

pairs of items. For a correctly specified model, we would

expect no significant correlation between residuals. In

Figure 5, the residual correlation plot for the RA score at

baseline is plotted. The residual correlation plot can also be

used to identify longitudinal correlations between pairs of

items that are not explained by the model.
Numerical diagnostics for pairs of items are popular in

the psychometrics literature and exist in many different ver-

sions. These statistics are generally all based on residuals

but differ in the way the residuals are calculated and

weighted. An overview of the available statistics gives the

work by Maydeu-Olivares,24 which found that for binary and

ordinal data the z statistic has the best type I error and

power behavior. When evaluating the significance of the

misspecification of all possible pairs of items, a family-wise

error rate correction, which, again, has to be taken into

account.
Misspecifications identified through item-pairs-fit diagnos-

tics can either be resolved by modifying the ICF for some

of the affected items or might be an indicator that more

latent variable dimensions are required. We will briefly dis-

cuss the extension of IRT models to multiple latent varia-

bles in Advanced Topics and Extensions section.

Overall GOF
Overall GOF diagnostics take both the fit of the items and

the fit of longitudinal model into account.
The most versatile graphical diagnostic for the general

model fit is the visual predictive check (VPC). Like for other

pharmacometric models, VPCs can be generated as a
function of time or other predictors and should be stratified
by important covariates. A particularity for IRT models is
that VPCs can be generated both on the item-level and on
the aggregate score scale. Generally, the former will show
the evolution of different response probabilities over time
and the later the evolution of certain percentiles (often
median, 2.5th and 97.5th percentile) of the total score.
Response probability and percentiles for the observed data
are then shown together with the corresponding confidence
intervals (often the 95% confidence interval) from the
model. It is important to evaluate the model on both scales,
because a good fit for the summary score can be the result
of positive and negative biases for different items that can-
cel each other out. Figure 6 shows aggregate score (Fig-
ure 6a) and item-level based (Figure 6b) VPCs for the RA
example.

There are two classes of numerical diagnostics to evalu-
ate the overall GOF of an IRT model. The first class of
diagnostics is test-based (i.e., they test the hypothesis that
the data is consistent with the distribution specified by the
model). For IRT models, the classical Pearson’s v2 test sta-
tistic is not appropriate and limited information GOF statis-
tics are commonly used.25 The second class of diagnostics
evaluate the closeness of the developed model to the
unknown truth. A popular statistic in the psychometric litera-
ture is the standardized root mean square residual, which
allows the definition of closeness of fit criteria independent
of the model complexity.26 At this point, it shall also be
mentioned that the GOF between two competing nested
models can be tested using the commonly used likelihood
ratio test.

Overall, model fit misspecifications can result from any of
the model component and it can be difficult at times to pin-
point its origin. It is, therefore, essential to also evaluate the
diagnostics described in the previous sections.

Advanced topics and extensions
In this tutorial, we only scratched the surface of the large
class of IRT models and focused on rather basic models.
These models often come with assumptions that are hard
to justify in practice. Fortunately, there are a number of
extensions that allow the application of IRT also in more
complex situations.

The assumed unidimensionality is often an issue. Scores
might consist of multiple subcomponents that are intended
to measure different aspects of a disease. The Positive and
Negative Syndrome Scale (PANSS) score in schizophrenia,
for example, consists of positive, negative, and general
PANSS subscales with potentially different evolution and
sensitivity to drug effects. In their IRT model, Krekels
et al.27 used a separate latent variable for each of the sub-
components to take this into account. Rather than using an
a priori grouping of items, Gottipati et al.23 used IRT-based
residual diagnostics to identify three (one of which with a
mixture) latent variables for the Movement Disorder
Society-Sponsored Revision of the Unified Parkinson Dis-
ease Rating Scale (MDS-UPDRS) scale in Parkinson dis-
ease. In some situations, the existence of separate
components might not even be tangible. An example is the
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NPI2 (see Table 1). In an earlier work, we demonstrated

the applicability of multidimensional item response theory

(MIRT) for these types of composite assessments.28 In

short, MIRT lets the response for one item depend on a

function of several latent component while allowing a differ-

ent contribution of components for different items.29

The assumption of conditional independence between

items is another simplification made throughout this tutorial

that might be violated in practice. For the RA score exam-

ple, we could imagine a dependence between “pain” and

“walk outdoors on flat ground” at a given time point or

between the ability to “get in and out of bed” at two time

points, that is not explained by the latent variable. The

introduction of additional random effects that are shared

between groups of items is one possibility to handle this

conditional dependence. The resulting type of models are

referred to as “testlet” models in the field of psychometrics

(the dependent items form a testlet).30 In addition to a

group of items at the same visit, conditional dependence

might also occur for the same item over time, especially

when observations are frequent. Germovsek et al.31

recently demonstrated how to handle longitudinal depen-

dence for a patient-reported outcome score reported on a

daily basis by linking an IRT model to a continuous-time

Markov model.
For completeness, it shall also be mentioned that there is

a whole class of IRT models that relax the assumption of a

correct model fit or more precisely that do not assume a

particular parametric model. An introduction to nonparamet-

ric IRT can be found, for example, in the book by Sijtsma &

Molenaar.32

When to use a pharmacometric IRT model
An IRT model for the very short RA score example requires

probably around 30 parameters, an NLMEM for the sum of

that score, on the other hand, could be developed with as

few as four parameters. This difference in the number of

parameters hints at the increased complexity of an IRT-

based analysis and might substantiate the question: Is this

increased effort worth it? As often, the answer to this ques-

tion is: it depends. The IRT models indeed provide unique

insights, but not all pharmacometric problems necessitate

those insights. We will, therefore, use this final section to

highlight some pharmacometric problems that could partic-

ularly benefit from an application of IRT, but we will also

discuss some drawbacks of this approach.
The IRT models allow us to separate the properties of an

assessment from the characteristics of the patient popula-

tion and the influence of the disease. Hence, they provide a

natural framework to combine different outcomes from the

same disease into a joint disease model. We can more

easily pool data from studies with different assessment var-

iants, treat different endpoints in a study as observations of

the same underlying disease variable, or link trial-specific

outcomes to clinical-routine tests.33,34 We also have greater

liberty to adapt the assessment to the patient population in

future trials or even modify the assessment dynamically as

the patients progress, and still maintain a common

reference.

The knowledge about the assessment in itself can be

very valuable. Rather than being a mere black-box the

structure and administration of an assessment become part

of the trial design space that can be optimized. We could,

for example, select the most sensitive items for a particular

disease severity to streamline the assessment pro-

cess,35–37 or eliminate assessment components that have a

disadvantageous signal to noise profile.38 Our understand-

ing of an assessment can be even further increased by

identifying covariates. We might then be able, for example,

to distinguish whether it is disease severity or reporting

behavior that differs between patients from different geo-

graphical regions.
With items as the elemental unit, our models also gain in

flexibility. Hence, we might be able to identify components

of the disease with differing natural progression or could

test if a treatment effect differs for individual or groups of

items.27,38,39

Last but not least, once we have established an IRT

model for an assessment, we can use this knowledge for

our benefit even when analyzing new data. For example,

we could only re-estimate the parameters that describe the

dynamics of the latent variable from the new data while

leaving all item parameters fixed to the established values

or use the established item parameters as priors. Using an

IRT model effectively corresponds to a weighing of the

observations by each item’s sensitivity. Provided the ICFs

fit, this weighing is optimal and will lead to an increase in

statistical power.35,40,41 Interestingly, this approach is

entirely prespecifiable.38

These different advantages of IRT-based analyses can

be applied at various points of the drug development pro-

cess (e.g., we could use IRT to create a most sensitive

assessment for a particular population in proof-of-concept

trials, benefit from the increased sensitivity of IRT when

analyzing the trial results, and finally predict the outcome of

a phase III trial with a wider patient population and a regu-

latory accepted end point).
The increased complexity of an IRT-based analysis, men-

tioned at the beginning of this section, is maybe its most

considerable downside. Models consist of many more com-

ponents that need to be checked, temporal evolution hap-

pens on a latent scale that needs to be understood, and

the highly nonlinear nature of the model needs to be han-

dled by the parameter estimation algorithm. The IRT mod-

els also face the same bias-variance tradeoff as all other

statistical models and one can argue that the flexibility of

the model together with a large number of parameters also

lead to a higher risk of overfitting. This overfitting risk is

especially true for small datasets, in which the ICFs could

be driven by outlying subjects, leading to biased results

and wrong conclusions.
We can mitigate against these risks by being cautious in

regard to model complexity, and we can use some of the

techniques presented in this tutorial to help during model

building. Those that are willing to spend this additional

effort will find an IRT an extremely valuable addition to the

pharmacometrics toolbox when it comes to the challenging

task of quantifying a disease.
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